КВАДРАТНЫЙ ТРЕХЧЛЕН III
§ 55. Составление квадратного уравнения по заданным корням
Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение
a(х — x1)(х — x2) = 0, (1)
где а — любое отличное от нуля действительное число. С другой стороны, как было показано в § 54, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
Ответ. Корни 1 и —2 имеют все квадратные уравнения вида
а(х — 1)(х + 2) = 0,
или
ах2 + ах — 2а = 0,
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
х2 + х — 2 = 0.
Упражнения
411. Составить квадратное уравнение, корнями которого были бы числа:
а) 2 и — 3; б) — 1 и — 5; в) 1/4 и 1/6; г) — 1/2 и — 1/3 .
412. Составить квадратное уравнение с целыми коэффициентами так, чтобы его корни были равны:
а) — 1/5 и 2/3; б) 4/7 и 5; в) — 3/2 и 2/9; г) — 3/10 и — 2/5.
413. Составить квадратное уравнение с целыми коэффициентами, корни которого равны 5/7 и — 1/2, а сумма всех коэффициентов равна 36.
414. Могут ли корнями квадратного уравнения с натуральными коэффициентами быть числа 6/5 и — 1/7?
415. Составить квадратное уравнение с целыми коэффициентами, если известно, что один из его корней равен:
а) 2 + √3 ; б) 3 —√2 .
ОТВЕТЫ
|