Глава I. Векторы на плоскости и в пространстве

§ 16. Проекция вектора на ось и ее свойства.

Пусть на плоскости или в пространстве заданы ось l с единичным вектором е и произвольный вектор а.

Ортогональной проекцией (или просто проекцией) вектора а на ось l называется число, равное произведению длины вектора а на косинус угла между векторами е и а.

Проекция вектора а на ось l обозначается символом  прl а   или   пре а.

Таким образом, по определению

прl а = | a | cos .

Отложим вектор а от точки О оси l.

Если угол между векторами е и а острый (рис. 50, а), то проекция вектора а на ось l равна длине отрезка ОА1  и где   А1  — проекция точки А на прямую l.

Действительно,

Если угол между векторами е и а тупой (рис. 50,б), то проекция вектора а на ось l равна длине отрезка ОА1 и взятой со знаком минус.

В самом деле,

Если вектор а перпендикулярен оси l, то  = 90° и прl а =  | a | cos 90° = 0.

Рассмотрим два важных свойства проекции вектора на ось.

Свойство 1. Для любых векторов а и b справедливо равенство

прl (а + b) = прl а + прl b, где l — произвольная ось.

Это свойство позволяет заменять проекцию суммы векторов суммой их проекций и наоборот.

Свойство 2. Для любого вектора а и любого числа k справедливо равенство

прl ka = k прl a,

где l — произвольная ось.

Это свойство позволяет выносить и вносить числовой множитель за знак проекции.

Справедливость этих свойств следует из правил действий над векторами, заданными своими координатами.

В самом деле, пусть l — произвольная ось с началом отсчета О и единичным вектором е. Введем прямоугольную систему координат следующим образом (рис. 51).

Примем точку О за начало координат, а вектор е — за первый базисный вектор (i = e). В качестве других базисных векторов j и k возьмем любые два единичных перпендикулярных друг другу вектора, лежащих в плоскости перпендикулярной оси l.

Пусть вектор а =  OA> имеет координаты х, у, z. Тогда, по определению проекции,

прl а = | a | cos .

Но | a | cos = x, т. е. проекция любого вектора на ось l равна абсциссе этого вектора в выбранном нами базисе.

Так как абсцисса суммы векторов равна сумме абсцисс слагаемых векторов (§ 11),   то,   следовательно, и проекция суммы векторов на ось l равна сумме проекций этих векторов на ось l.

Точно так же и проекция произведения вектора на число равна произведению этого числа на проекцию вектора, так как при умножении вектора на число его абсцисса умножается на это число.

Используются технологии uCoz