ГЛАВА III. § 38. ЗАВИСИМОСТЬ МЕЖДУ УГЛАМИ, Мы знаем, что две прямые параллельны, если при пересечении их третьей прямой равны соответственные углы, или внутренние, или внешние накрест лежащие углы, или сумма внутренних, или сумма внешних односторонних углов равна 2d. Докажем, что верны и обратные теоремы, а именно: Если две параллельные прямые пересечены третьей, то: 1) соответственные углы равны; Докажем, например, что если две параллельные прямые пересечены третьей прямой, то соответственные углы равны. Пусть прямые АВ и СD параллельны, а МN — их секущая (черт. 202).Докажем, что соответственные углы 1 и 2 равны между собой. Допустим, что / 1 и / 2 не равны. Тогда при точке О можно построить / МОК, соответственный и равный / 2 (черт. 203). Но если / МОК = / 2, то прямая ОК будет параллельна СD (§ 35). Получили, что через точку О проведены две прямые АВ и ОК, параллельные прямой СD. Но этого быть не может ( § 37). Мы пришли к противоречию, потому что допустили, что / 1 и / 2 не равны. Следовательно, наше допущение является неправильным и / 1 должен быть равен / 2, т. е. соответственные углы равны. Установим соотношения между остальными углами. Пусть прямые АВ и СD параллельны, а МN — их секущая (черт. 204). Мы только что доказали, что в этом случае соответственные углы равны. Положим, что какие-нибудь два из них имеют по 119°. Вычислим величину каждого из остальных шести углов. На основании свойств смежных и вертикальных углов мы получим, что четыре угла из восьми будут иметь по 119°, а остальные — по 61°. Оказалось, что как внутренние, так и внешние накрест лежащие углы попарно равны, а сумма внутренних или внешних односторонних углов равна 180° (или 2d). То же самое будет иметь место и при любом другом значении равных соответственных углов. Следствие 1. Если каждая из двух прямых АВ и СD параллельна одной и той же третьей прямой МN, то первые две прямые параллельны между собой (черт. 205). В самом деле, проведя секущую ЕF (черт. 206), получим: Значит, / 1 = / 2, а это углы соответственные при прямых АВ и СD и секущей ЕF, следовательно, прямые АВ и СD параллельны. Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (черт. 207). В самом деле, если ЕF _|_ АВ, то / 1 = d; если АВ || СD, то / 1 = / 2. Следовательно, / 2 = d т. е. ЕF _|_ СD . |