ГЛАВА VI.

ПРЯМАЯ ПРИЗМА. ПОВЕРХНОСТЬ И ОБЪЁМ ПРЯМОЙ ПРИЗМЫ.

§ 68. ОБЪЁМ ПРЯМОЙ ПРИЗМЫ.

1. Объём прямой треугольной призмы.

Пусть требуется найти объём прямой треугольной призмы, площадь основания которой равна S, а высота равна h = АА' = = ВВ' = СС' (черт. 306).

Начертим отдельно основание призмы, т. е. треугольник АBС (черт. 307, а), и достроим его до прямоугольника, для чего через вершину В проведём прямую КМ || АС и из точек A и С опустим на эту прямую перпендикуляры АF и СЕ. Получим прямоугольник АСЕF. Проведя высоту ВD треугольника АBС, увидим, что прямоугольник АСЕF разбился на 4 прямоугольных треугольника. Причём /\ ВСЕ = /\ BCD и /\ ВАF = /\ ВАD. Значит, площадь прямоугольника АСЕF вдвое больше площади треугольника АBС, т. е. равна 2S.

К данной призме с основанием АBС пристроим призмы с основаниями ВСЕ и BАF и высотой h (черт. 307, б). Получим прямоугольный параллелепипед с основанием
АСЕF.

Если этот параллелепипед рассечём плоскостью, проходящей через прямые BD и ВВ', то увидим, что прямоугольный параллелепипед состоит из 4 призм с основаниями
ВСD, ВСЕ, BАD и ВАF.

Призмы с основаниями ВСD и ВСЕ могут быть совмещены, так как основания их равны ( /\ ВСD =  /\ BСЕ) и также равны их боковые рёбра, являющиеся перпендикулярами к одной плоскости. Значит, объёмы этих призм равны. Также равны объёмы призм с основаниями BАD и BАF.

Таким образом, оказывается, что объём данной треугольной призмы с основанием
АBС вдвое меньше объёма прямоугольного параллелепипеда с основанием АСЕF.

Нам известно, что объём прямоугольного параллелепипеда равен произведению площади его основания на высоту, т. е. в данном случае равен 2Sh. Отсюда объём данной прямой треугольной призмы равен Sh.

Объём прямой треугольной призмы равен произведению площади её основания на высоту.

2. Объём прямой многоугольной призмы.

Чтобы найти объём прямой многоугольной призмы, например пятиугольной, с площадью основания S и высотой h, разобьём её на треугольные призмы (черт. 308).

Обозначив площади основания треугольных призм через S1, S2 и S3 , а объём данной многоугольной призмы через V, получим:

V = S1h + S2h + S3h,   или   
V = (S1+ S2 + S3)h.               

И окончательно: V = Sh.

Таким же путём выводится формула объема прямой призмы, имеющей в основании любой многоугольник.

Значит, объём любой прямой призмы равен произведению площади её основания на высоту.

Упражнения.

1. Вычислить объём прямой призмы, имеющей в основании параллелограмм, по следующим данным:

 

Основание
параллело-
грамма

Высота
параллело-
грамма

Высота
призмы

Объём
призмы

а)
б)
в)
г)

30 см
17,5 см
6,5 м
4,8 дм

8 см
6,4 см
4,8 м
35 см

45 см
35 см
10 м
0,4м

 

2. Вычислить объём прямой призмы, имеющей в основании треугольник, по следующим данным:

 

Основание
треугольника

Высота
треугольника

Высота
призмы

Объём
призмы

а)
б)
в)

18 см
0,7 м
0,65 м

9 см
0,65 м
48 см

20 см
1,2 м
1,5 м

 

3. Вычислить объём прямой призмы, имеющей в основании равносторонний треугольник со стороной в 12 см (32 см, 40 см). Высота призмы 60 см.

4. Вычислить объём прямой призмы, имеющей в основании прямоугольный треугольник с катетами в 12 см и 8 см (16 см и 7 см; 9 м и 6 м). Высота призмы 0,3 м.

5. Вычислить объём прямой призмы, имеющей в основании трапецию с параллельными сторонами в 18 см и 14 см и высотой в 7,5 см. Высота призмы 40 см.

6. Вычислить объём вашей классной комнаты (физкультурного зала, своей комнаты).

7. Полная поверхность куба равна 150 см2 (294 см2, 864 см2). Вычислить объём этого куба.

8. Длина строительного кирпича — 25,0 см, ширина его — 12,0 см  толщина — 6,5 см. а) Вычислить его объём, б) Определить его вес, если 1 кубический сантиметр кирпича весит 1,6 г.

9. Сколько штук строительного кирпича потребуется для постройки сплошной кирпичной стены, имеющей форму прямоугольного параллелепипеда длиной в 12 м, шириной в 0,6 м и высотой в 10м?   (Размеры кирпича из упражнения 8.)

10. Длина чисто обрезаной доски равна 4,5 м, ширина — 35 см  толщина — 6 см. а) Вычислить объем б) Определить её вес, если кубический  дециметр доски   весит 0,6 кг.

11. Сколько тонн сена можно уложить в сеновал, покрытый двускатной крышей (черт. 309), если длина  сеновала равна 12 м, ширина — 8 м,  высота — 3,5 м и высота конька крыши равна 1,5 м? (Удельный вес сена принять за 0,2.)

12. Требуется выкопать канаву длиной 0,8 км; в разрезе канава должна иметь форму трапеции с основаниями в 0,9 м и 0,4 м, и глубина канавы должна равняться 0,5 м (черт. 310). Сколько кубометров земли придется при этом вынуть?

Используются технологии uCoz