169. Через вершину конуса проведена плоскость под углом α к основанию конуса. Эта плоскость пересекает основание по хорде АВ длины a , стягивающей дугу основания конуса, которой соответствует центральный угол β. Найти объем конуса. Решение
170. Конус и цилиндр имеют общее основание, а вершина конуса находится в центре другого основания цилиндра. Чему равен угол между осью конуса и его образующей, если известно, что полная поверхность цилиндра относится к полной поверхности конуса как 7:4. Решение
171. В конус вписан цилиндр, высота которого равна радиусу основания конуса. Найти угол между осью конуса и его образующей, зная, что полная поверхность цилиндра относится к площади основания конуса как 3:2. Решение
172. В конус, образующая которого l наклонена к плоскости основания под углом α, вписана правильная n-угольная призма, все ребра которой равны между собой, Найти полную поверхность призмы. Решение
173. Четыре стороны равнобочной трапеции касаются цилиндра, ось которого перпендикулярна к параллельным сторонам трапеции. Найти угол, образуемый плоскостью трапеции с осью цилиндра, зная, что длины оснований трапеции равны а и b, а высота трапеции равна h. Решение
174. Шар вписан в прямую призму, в основании которой лежит прямоугольный треугольник. В этом треугольнике перпендикуляр длины h, опущенный из вершины прямого угла на гипотенузу, составляет с одним из катетов угол α. Найти объем призмы. Решение
175. В правильную n-угольную пирамиду со стороной основания а и боковым ребром b вписан шар. Найти его радиус. Решение
176. В правильную треугольную пирамиду вписан шар. Определить угол наклона боковой грани пирамиды к плоскости основания, зная, что отношение объема пирамиды к объему шара равно 27√3 /4π. Решение
177. Около шара радиуса r описана правильная n-угольная пирамида, у которой двугранный угол при основании равен α. Найти отношение объема шара к объему пирамиды. Решение
178. Найти отношение объема правильной n-угольной пирамиды к объему вписанного в нее шара, зная, что окружности, описанные около основания и боковых граней пирамиды, равны между собой. Решение
179. Найти высоту правильной четырехугольной пирамиды, если известно, что объем шара, описанного около пирамиды, равен V, а перпендикуляр, опущенный из центра шара на ее боковую грань, образует с высотой пирамиды угол α. Решение
180. Шар радиуса R вписан в пирамиду, в основании которой лежит ромб с острым углом α. Боковые грани пирамиды наклонены к плоскости основания под углом ψ. Найти объем пирамиды. Решение
181. Две правильные n-угольные пирамиды с одинаковыми основаниями сложены этими основаниями. Найти радиус шара, вписанного внутрь получившегося многогранника, зная, что сторона общего основания пирамид равна а, а высоты пирамид равны h и H. Решение
182. Две правильные n-угольные пирамиды с одинаковыми основаниями, но разными высотами, сложены этими основаниями, и около получившегося многогранника описан шар радиуса R. Найти высоты пирамид, зная, что сторона основания равна а. При каком соотношении между а и R задача разрешима? Решение
|