В разделе "Определение значений
тригонометрических функций любого угла" мы выяснили, что поведение тригонометрических функций, и функции у = sin х в частности, на всей числовой прямой (или при всех значениях аргумента х) полностью определяется ее поведением в интервале 0 < х < π/2 .
Поэтому прежде всего мы построим график функции у = sin х именно в этом интервале.
Составим следующую таблицу значений нашей функции;
Отмечая соответствующие точки на плоскости координат и соединяя их плавной линией, мы получаем кривую, представленную на рисунке
Полученную кривую можно было бы построить и геометрически, не составляя таблицы значений функции у = sin х.
1.Первую четверть окружности радиуса 1 разделим на 8 равных частей.Ординаты точек деления окружности представляют собой синусы соответствующих углов.
2.Первая четверть окружности соответствует углам от 0 до π/2. Поэтому на оси х возьмем отрезок [0 , π/2 ] и разделим его на 8 равных частей.
3.Проведем прямые, параллельные оси х, а из точек деления восставим перпендикуляры до пересечения с горизонтальными прямыми.
4.Точки пересечения соединим плавной линией.
Теперь обратимся к интервалу π/2 < х < π. Каждое значение аргумента х из этого интервала можно представить в виде
x = π/2 + φ
где 0 <φ < π/2 . По формулам приведения
sin ( π/2 + φ) = соsφ = sin ( π/2 — φ).
Точки оси х с абциссами π/2 + φ и π/2 — φ симметричны друг другу относительно точки оси х с абсциссой π/2, и синусы в этих точках одинаковы. Это позволяет получить график функции у = sin х в интервале [π/2
, π ] путем простого симметричного отображения графика этой функции в интервале [0 , π/2 ] относительно прямой х = π/2.
Теперь, используя свойство нечетности функции у = sin х,
sin (— х) = — sin х,
легко построить график этой функции в интервале [— π, 0].
Функция у = sin х периодична с периодом 2π;. Поэтому для построения всего графика этой функции достаточно кривую, изображенную на рисунке, продолжить влево и вправо периодически с периодом 2π.
Полученная в результате этого кривая называется синусоидой. Она и представляет собой график функции у = sin х.
Рисунок хорошо иллюстрирует все те свойства функции у = sin х, которые раньше были доказаны нами. Напомним эти свойства.
1) Функция у = sin х определена для всех значений х, так что областью ее определения является совокупность всех действительных чисел.
2) Функция у = sin х ограничена. Все значения, которые она принимает, заключены в интервале от —1 до 1, включая эти два числа. Следовательно, область изменения этой функции определяется неравенством —1< у < 1. При х = π/2 + 2kπ функция принимает наибольшие значения, равные
1,
а при х = — π/2 + 2kπ — наименьшие значения, равные — 1.
3) Функция у = sin х является нечетной (синусоида симметрична относительно начала координат).
4) Функция у = sin х периодична с периодом 2π.
5) В интервалах 2nπ < x < π + 2nπ (n — любое целое число) она положительна, а в интервалах π + 2kπ < х < 2π + 2kπ (k — любое целое число) она отрицательна. При х = kπ функция обращается в нуль. Поэтому эти значения аргумента х (0; ±π; ±2π;
...) называются нулями функции у = sin x
6) В интервалах — π/2 + 2nπ < х < π/2 + 2nπ функция у = sin x монотонно возрастает, а в интервалах π/2 + 2kπ < х < 3π/2
+ 2kπ она монотонно убывает.
Cледует особо обратить внимание на поведение функции у = sin x вблизи точки х= 0.
Как видно из рисунка , в окрестности точки х = 0 синусоида почти сливается с биссектрисой 1-го и 3-го координатных углов. Поэтому при малых углах х, выраженных в радианах, или при малых по абсолютной величине числовых значениях х (как положительных, так и отрицательных)
sin x ≈ x.
|
|
Например, sin 0,012 ≈ 0,012; sin (—0,05) ≈ —0,05;
sin 2° = sin π • 2 /180 = sin π/90 ≈ 0,03 ≈ 0,03.
Вместе с тем следует отметить, что при любых значениях х
| sin x | < | x |. (1)
Действительно, пусть радиус окружности, представленной на рисунке, равен 1, a / AОВ = х.
Тогда sin x = АС. Но АС < АВ, а АВ, в свою очередь, меньше длины дуги АВ, на которую опирается угол х. Длина этой дуги равна, очевидно, х, так как радиус окружности равен 1. Итак, при 0 < х < π/2
sin х < х.
Отсюда в силу нечетности функции у = sin x легко показать, что при — π/2 < х < 0
| sin x | < | x |.
Наконец, при x = 0
| sin x | = | x |.
Таким образом, для | х | < π/2 неравенство (1) доказано. На самом же деле это неравенство верно и при | x | > π/2 в силу того, что | sin х | < 1, а π/2 > 1
Упражнения
1.По графику функции у = sin x определить: a) sin 2; б) sin 4; в) sin (—3).
2.По графику функции у = sin x определить, какое число из интервала [ — π/2 , π/2] имеет синус, равный: а) 0,6; б) —0,8.
3. По графику функции у = sin x определить, какие числа имеют синус, равный 1/2.
4. Найти приближенно (без использования таблиц): a) sin 1°; б) sin 0,03; в) sin (—0,015); г) sin (—2°30').
|